1. 看考云 > 知识库 >

画一条直线变成两个三角形,五边形如何一条线分成两个三角形

本文目录索引

1,五边形如何一条线分成两个三角形

根据数学上“线”的概念,线是无宽度的长度,那么就可以用一条足够粗的线,线的宽度和五边形的一边长度相同,用这条粗线从五边形中和它宽度相同的边垂直划过,那么这剩余的四边和那一条粗线所组成的便就是两个三角形了。如下图: 线是由无数个点集合成的图形,线的性质有: 1、一线的两端是点。 2、直线是它上面的点一样地平放着的线。 3、过两点有作且有一条直线。 4、线段(有限直线)可以无限地延长。 5、同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。 扩展资料 完美五边形 德国数学家卡尔·莱因哈特于1918年发现了五种可以镶嵌平面的五边形,从那时起,寻找可以镶嵌平面的五边形并将它们分类就成为了一个数学世纪难题。 很多人都认为莱因哈特已经把所有可以镶嵌平面的五边形都找出来了,但事实并非如此:1968年,R·B·克什纳又发现了三种;1975年,理查德·詹姆斯将纪录刷新到了9种。 1985年,罗尔夫·施泰因发现了第14种。似乎这样的五边形还会越来越多。不过,在那之后五边形追踪行动似乎陷入了低谷。 2015年8月19日,美国华盛顿大学研究团队发现了一种新的不规则五边形,相互组合后可完全铺满平面,不会出现重迭或有任何空隙,是全球第15种能做到此效果的五边形。

五边形如何一条线分成两个三角形

2,4年级奥数,在图上画一条直线使下面图形划为两个三角形

作为奥数题,是无解的,因为直线是没有粗细的.而且,你还可以从内角和的角度来证明此图无法分成二个三角形.不管是谁出的,哪怕是数学大师出的,都是欠考虑的.
但,作为脑筋急转弯,那就是画一条足够粗的线.不过,脑筋急转弯,转多了,人就变傻了!

PS:看到仍有不少人关注这题,我就不妨多说几句:
1.直线的定义不是很明确的,教小学生时强调的是二点:一是可往两端无限延伸,这个没有异议,二是没有粗细并强调要多细有多细而绝不是要多粗有多粗!这是从正面理解直线.更多的关于直线定义的争执于小学生不利.数学家们都说了:每一种不同的直线定义就对应一种不同的几何体系.
2.我也陪画一条足够粗的线的玩玩脑筋急转弯:我一不小心,用了一条整个宇宙这么粗的直线一笔画过,天啦,我现在站在这条直线上,看不到太阳,也看不到地球了,我要回家,大师们,帮帮我吧......

3,如何只画一条直线把五边形分成两个三角形

1、由题意知,上述五边形应为凹五边形,如图所示: 2、一条直线把五边形分成两个三角形,也就是一刀分开,如图所示: 扩展资料: 凹多边形的内角和的解,应该通过(n-2)180°来计算。实际上是把大于平角的角划分为两个角,使得任意一个凹N多边形,都可分画为N-2个三角形,因此凹多边形的内角和,也适用(N-2)180°这个公式。不可以沿着一条边的延长线切割凹多边形。 平面上,凹多边形与边数相同的凸多边形的内角和相等。 参考资料:百度百科-凹多边形