1. 看考云 > 知识库 >

分子机器

分子马达是什么?
分子马达是什么?
提示:

分子马达是什么?

分子马达(molecular motor)是指由生物大分子构成,利用化学能进行机械做功的纳米系统。生命体的一切活动,包括肌肉收缩、物质运输、DNA复制、细胞分裂等,追踪到分子水平都是来源于具有马达功能的蛋白质大分子做功推送的结果,因此它们被称为分子马达或蛋白质马达。 分子马达本质上是一类ATP酶。例如肌肉中的肌球蛋白会拉动粗肌丝向中板移动,引起肌肉收缩。而另外两种分子马达:驱动蛋白和动力蛋白,它们能够承载着分子“货物”,如质膜微粒,甚至是线粒体和溶酶体,在由微管构成的轨道上滑行,起到运输的作用。 分子马达发展前景 由人类控制的分子马达可以打造纳米机器人(也称分子机器人)。 目前人类还无法制造纳米这么小的机器人,一部分原因是找不到足够小的动能装置。分子马达既然能把生物能转化为机械能,一旦被人类完美地控制,就完全可以充当纳米机器人的发动机。 可以把分子马达看成一个最简单的纳米机器人,像一种长了两条“腿”的肌球蛋白分子马达,可以做线性推进运动,在人体内,它的一大作用是在细胞内搬运小泡等物质,理论上,如果再给它装个筐,它也能运其他东西。 目前,科学家还在研究怎样把多个分子马达组合,或把它们和其他分子联系,组成一个稍微“复杂”的机器。在实验室里,科学家已经做成了由350个原子组成的螺旋桨、2.5纳米大小的升降机、3纳米的剪刀,这些都可以算是纳米机器人的雏形。 纳米机器人潜在用途十分广泛,其中特别重要的就是应用于医疗领域。例如美国佛罗里达大学的科学家最近研制出一种能够 100%地杀灭丙肝病毒的纳米机器人。 这种纳米机器人由两组物质构成:一组是能够攻击并摧毁RNA(参与复制丙肝相关蛋白)的酶,另一部分是一种寡核苷酸,能识别疾病相关蛋白并将酶送过去消除危害。 在细胞培养和小鼠实验中,这个新方法已达到了近乎 100%的有效率,且没有任何副作用,例如免疫系统反应。这项新成果促进了医疗纳米机器人的发展,目前也逐步向临床应用迈进。 以上内容参考 百度百科- 分子马达

分子马达是什么?
提示:

分子马达是什么?

分子马达(molecular motor),是美国康奈尔大学研究人员在活细胞内的能源机制启发下,制造出的一种马达.这种微型马达以三磷酸腺苷酶为基础,依靠为细胞内化学反应提供能量的高能分子三磷酸腺苷(ATP)为能源.
分子马达,又名分子发动机,是分布于细胞内部或细胞表面的一类蛋白质,它们的构象会随着与ATP和ADP的交替结合而改变,ATP水解的能量转化为机械能,引起马达形变,或者是它和与其结合的分子产生移动.就是说,分子马达本质上是一类ATP酶.例如肌肉中的肌球蛋白会拉动粗肌丝向中板移动,引起肌肉收缩.而另外两种分子马达:驱动蛋白和动力蛋白,它们能够承载着分子“货物”-------------如:质膜微粒,甚至是线粒体和溶酶体,在由微管构成的轨道上滑行,起到运输的作用.

核糖体的主要功能是什么
提示:

核糖体的主要功能是什么

“核糖体”的主要功能是:按照mRNA的指令将遗传密码转换成氨基酸序列,并从氨基酸单体构建蛋白质聚合物,核糖体在肽基转移和肽基水解这两个极其重要的生物过程中起催化作用。
核糖体旧称“核糖核蛋白体”或“核蛋白体”,普遍被认为是细胞中的一种细胞器,除哺乳动物成熟的红细胞,植物筛管细胞外,细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体。

核糖体的作用
提示:

核糖体的作用

  1、核糖体的作用:核糖体在细胞中负责完成“中心法则”里 由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小亚基会先与从细胞核中转录得到的信使RNA结合。

  2、再结合核糖体大亚基构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小亚基会再次分离。

  3、核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。

2016诺贝尔化学奖“分子机器”,为什么会是分子机器?
提示:

2016诺贝尔化学奖“分子机器”,为什么会是分子机器?

据诺贝尔官网消息,斯德哥尔摩当地时间5日中午,2016年诺贝尔化学奖在瑞典皇家科学院揭晓,让-皮埃尔-索维奇,J-弗雷泽-斯托达特爵士和伯纳德-L-费林加三位科学家分享该奖,以表彰他们在“合成分子机器”方面的研究。 法国化学家让 - 皮埃尔·索维奇,英国化学家J-弗雷泽-斯托达特爵士,荷兰化学家伯纳德-L-费林加共同获得2016年诺贝尔化学奖,获奖理由是分子机器的设计与合成。他们发明了“全世界最小的机器”,将分子合成在一起,使其成为极微小的电机和传动装置,这些机器比一根头发丝的1000分之一还要细。 分子机器,指由分子尺度的物质构成、能行使某种加工功能的机器,其构件主要是蛋白质等生物分子。因其尺寸多为纳米级,又称生物纳米机器,具有小尺寸、多样性、自指导、有机组成、自组装、准确高效、分子柔性、自适应、仅依靠化学能或热能驱动、分子调剂等其他人造机器难以比拟的性能,因此研究生物纳米机器具有重大意义。 法国化学家让-皮埃尔-索维奇、英国化学家J-弗雷泽-斯托达特爵士以及荷兰化学家伯纳德-L-费林加凭借共同设计与合成分子机器获得了2016年诺贝尔化学奖。他们使得分子运动具有可控制性,只要加入能量,就能执行任务。分子机器是一个小型升降机、人造肌肉和体型极小的马达。计算的发展为我们展示了技术的微型化将带来怎样的革新。2016年的诺贝尔化学奖得主使机器变得微型,并为化学这一领域开辟新的前进道路。 让-皮埃尔-索维奇早在1983年就迈出了分子机器的第一步。当时他成功将环状分子连接成链,名为索烃。一般来说,分子有强大的共价键连起来,原子在共价键共享电子,但是在链条中,分子则被更加自由的机器纽带连接在一起。一架能够执行任务的机器必须包含可以相对移动的部分。这两个交叉连结的环正好满足了这个条件。 1991年,斯托达特爵士进行了第二步。他分解出了轮烷。他将分子环缠绕在很细的分子轴上,表明分子环可以沿着分子轴移动。他的实验基于轮状化合物,包括分子起重机、分子肌和分子级别的电脑芯片。 伯纳德-L-费林是第一个做出了分子马达的人。1999年,他得到了一个可以沿着一个方向持续旋转的分子马达叶片。他可以用分子马达旋转一个玻璃量筒,这个量筒是分子马达的1万倍大。他还设计了一个纳米汽车。