1. 看考云 > 知识库 >

拉姆齐二染色定理,拉姆齐二染色定理是什么

本文目录索引

1,拉姆齐二染色定理是什么

拉姆齐二染色定理是一个数学组合问题,其命题是这样的: 要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识。 这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。这个证明有一个附图。 ----------------------------------------------- 在组合数学上,拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识。 这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。 拉姆齐数的定义 拉姆齐数,用图论的语言有两种描述: 对于所有的N顶图,包含k个顶的团或l个顶的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l); 在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn[e1]中含有一个k阶子完全图,Kn[e2]含有一个l阶子完全图,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图) 拉姆齐证明,对与给定的正整数数k及l,R(k,l)的答案是唯一和有限的。 拉姆齐数亦可推广到多于两个数: 对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为e1,e2,e3,...,er,在Kn中,必定有个颜色为e1的l1阶子完全图,或有个颜色为e2的l2阶子完全图……或有个颜色为er的lr阶子完全图。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。 拉姆齐数的数值或上下界 已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。” 显然易见的公式: R(1,s)=1, R(2,s)=s, R(l1,l2,l3,...,lr;r)=R(l2,l1,l3,...,lr;r)=R(l3,l1,l2,...,lr;r)(将li的顺序改变并不改变拉姆齐的数值)。 r,s 3 4 5 6 7 8 9 10 3 6 9 14 18 23 28 36 40 – 43 4 9 18 25 35 – 41 49 – 61 56 – 84 73 – 115 92 – 149 5 14 25 43 – 49 58 – 87 80 – 143 101 – 216 125 – 316 143 – 442 6 18 35 – 41 58 – 87 102 – 165 113 – 298 127 – 495 169 – 780 179 – 1171 7 23 49 – 61 80 – 143 113 – 298 205 – 540 216 – 1031 233 – 1713 289 – 2826 8 28 56 – 84 101 – 216 127 – 495 216 – 1031 282 – 1870 317 – 3583 317 – 6090 9 36 73 – 115 125 – 316 169 – 780 233 – 1713 317 – 3583 565 – 6588 580 – 12677 10 40 – 43 92 – 149 143 – 442 179 – 1171 289 – 2826 317 – 6090 580 – 12677 798 – 23556 R(3,3,3)=17 更详尽的可见于www.combinatorics.org/Surveys/ds1/sur.pdf R(3,3)等于6的证明 证明:在一个K6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。 任意选取一个端点P,它有5条边和其他端点相连。 根据鸽巢原理,3条边的颜色至少有两条相同,不失一般性设这种颜色是红色。 在这3条边除了P以外的3个端点,它们互相连结的边有3条。 若这3条边中任何一条是红色,这条边的两个端点和P相连的2边便组成一个红色三角形。 若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。 而在K5内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点 的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理。 ------------------------------------------

拉姆齐二染色定理是什么

2,拉姆齐二染色定理的相关研究

2010年8月,中南大学数学科学与计算技术学院酷爱数理逻辑的刘路在自学反推数学的时候,第一次接触到拉姆齐二染色定理,并在阅读大量文献时发现,海内外不少学者都在进行反推数学中的拉姆齐二染色定理的证明论强度的研究。这是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想,10多年来许多著名研究者一直努力都没有解决。同年10月的一天,刘路突然想到利用之前用到的一个方法稍作修改便可以证明这一结论,连夜将这一证明写出来,投给了数理逻辑国际权威杂志《符号逻辑杂志》。2011年5月,由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行,还是大三学生的刘路应邀参加了这次会议,报告了他对目前反推数学中的拉姆齐二染色定理的证明论强度的研究。刘路的报告给这一悬而未决的公开问题一个否定式的回答,彻底解决了西塔潘的猜想。《符号逻辑杂志》的主编、逻辑学专家、芝加哥大学数学系邓尼斯·汉斯杰弗德看到论文后给他写信:“我是过去众多研究该问题而无果者之一,看到这一问题的最终解决感到非常高兴,特别如你给出的如此漂亮的证明,请接受我对你令人赞叹的惊奇的成果的祝贺!”同时,邓尼斯·汉斯杰弗德教授高兴地将刘路的研究介绍给了其他几位同仁和专家,他们一起审读、反复商讨。论文审稿人、芝加哥大学博士达米尔·扎法洛夫也认为:“这是一个重要的结果,过去20多年许多著名科研工作者在这方面进行努力。该问题的研究促进了反推数学和计算性理论方面的研究。”2011年9月16日,美国芝加哥大学数理逻辑学术会议上,云集了来自欧美的许多数理逻辑专家、学者。大会邀请了12位专家、学者作学术报告,刘路作为亚洲高校唯一一位代表在会上作了40分钟报告。他在数理逻辑方面的研究成果,让与会专家、学者对这位来自中国的“80后”投上赞许的目光。刘路表示,他投给《美国数学会汇刊》的论文获得威士康星大学、伯克利大学等几位教授很高的评价,有望公开发表。 刘嘉忆本名刘路,今年只有23岁,是中南大学应用数学专业大三的学生,酷爱数学。刘路的研究成果引起了数学界的广泛关注,三名中科院院士为他写推荐信,希望教育部破格批准他直接读博或硕博连读。据刘路的导师侯振挺教授介绍,刘路本人对周遭的一切变化显得很淡定,他已经关掉了手机,继续在数学的世界中潜心学习。

3,拉姆齐二染色定理

“拉姆齐二染色定理”以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。拉姆齐数的定义拉姆齐数,用图论的语言有两种描述:对于所有的N顶图,包含k个顶的团或l个顶的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l);在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn[e1]中含有一个k阶子完全图,Kn[e2]含有一个l阶子完全图,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图)拉姆齐证明,对与给定的正整数数k及l,R(k,l)的答案是唯一和有限的。拉姆齐数亦可推广到多于两个数:对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为e1,e2,e3,...,er,在Kn中,必定有个颜色为e1的l1阶子完全图,或有个颜色为e2的l2阶子完全图……或有个颜色为er的lr阶子完全图。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。 拉姆齐数的数值或上下界已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。”显而易见的公式: R(1,s)=1, R(2,s)=s, R(l1,l2,l3,...,lr;r)=R(l2,l1,l3,...,lr;r)=R(l3,l1,l2,...,lr;r)(将li的顺序改变并不改变拉姆齐的数值)。 r,s 3 4 5 6 7 8 9 103 6 9 14 18 23 28 36 40 – 434 9 18 25 35 – 41 49 – 61 56 – 84 73 – 115 92 – 1495 14 25 43 – 49 58 – 87 80 – 143 101 – 216 125 – 316 143 – 4426 18 35 – 41 58 – 87 102 – 165 113 – 298 127 – 495 169 – 780 179 – 11717 23 49 – 61 80 – 143 113 – 298 205 – 540 216 – 1031 233 – 1713 289 – 28268 28 56 – 84 101 – 216 127 – 495 216 – 1031 282 – 1870 317 – 3583 317 – 60909 36 73 – 115 125 – 316 169 – 780 233 – 1713 317 – 3583 565 – 6588 580 – 1267710 40 – 43 92 – 149 143 – 442 179 – 1171 289 – 2826 317 – 6090 580 – 12677 798 – 23556R(3,3,3)=17 R(3,3)等于6的证明证明:在一个K6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。任意选取一个端点P,它有5条边和其他端点相连。根据鸽巢原理,3条边的颜色至少有两条相同,不失一般性设这种颜色是红色。在这3条边除了P以外的3个端点,它们互相连结的边有3条。若这3条边中任何一条是红色,这条边的两个端点和P相连的2边便组成一个红色三角形。若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。而在K5内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理

4,Ramsey定理的内容

Ramsey定理的通俗表述:6 个人中至少存在3人相互认识或者相互不认识。该定理等价于证明这6个顶点的完全图的边,用红、蓝二色任意着色,必然至少存在一个红色边三角形,或蓝色边三角形。注:这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic (《形式逻辑上的一个问题》)证明了R(3,3)=6。

5,拉姆齐(Ramsly)二染色定理是什么?

Ramsey定理: 
Ramsey(1903~1930)是英国数理逻辑学家,他把抽屉原理加以推广,得出广义抽屉原理,也称为Ramsey定理。   Ramsey定理(狭义)的内容:任意六个人中要么至少三个人认识,要么至少三个不认识   证明如下:首先,把这6个人设为A、B、C、D、E、F六个点。由A点可以引出AB、AC、AD、AE、AF五条线段。设:如果两个人识,则设这两个人组成的线段为红色;如果两个人不认识,则设这两个人组成的线段为蓝色。由抽屉原则可知:这五条线段中至少有三条是同色的。不妨设AB、AC、AD为红色。若BC或CD为红色,则结论显然成立。若BC和CD均为蓝色,则若BD为红色,则一定有三个人相互认识;若BD为蓝色,则一定有三个人互相不认识。
希望采纳,谢谢o(∩_∩)o

6,西塔潘猜想是什么

西塔潘猜想,又称“拉姆齐二染色定理”,是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想。在组合数学上,拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识。2011年5月,由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行,中南大学数学科学与计算技术学院酷爱数理逻辑的刘嘉忆的报告给这一悬而未决的公开问题一个否定式的回答,彻底解决了西塔潘的猜想。
来源于“拉姆齐二染色定理”以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。拉姆齐数的定义拉姆齐数,用图论的语言有两种描述:对于所有的N顶图,包含k个顶的团或l个顶的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l);在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn[e1]中含有一个k阶子完全图,Kn[e2]含有一个l阶子完全图,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图)拉姆齐证明,对与给定的正整数数k及l,R(k,l)的答案是唯一和有限的。拉姆齐数亦可推广到多于两个数:对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为e1,e2,e3,...,er,在Kn中,必定有个颜色为e1的l1阶子完全图,或有个颜色为e2的l2阶子完全图……或有个颜色为er的lr阶子完全图。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。 拉姆齐数的数值或上下界已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。”显然易见的公式: R(1,s)=1, R(2,s)=s, R(l1,l2,l3,...,lr;r)=R(l2,l1,l3,...,lr;r)=R(l3,l1,l2,...,lr;r)(将li的顺序改变并不改变拉姆齐的数值)。 r,s 3 4 5 6 7 8 9 103 6 9 14 18 23 28 36 40 – 434 9 18 25 35 – 41 49 – 61 56 – 84 73 – 115 92 – 1495 14 25 43 – 49 58 – 87 80 – 143 101 – 216 125 – 316 143 – 4426 18 35 – 41 58 – 87 102 – 165 113 – 298 127 – 495 169 – 780 179 – 11717 23 49 – 61 80 – 143 113 – 298 205 – 540 216 – 1031 233 – 1713 289 – 28268 28 56 – 84 101 – 216 127 – 495 216 – 1031 282 – 1870 317 – 3583 317 – 60909 36 73 – 115 125 – 316 169 – 780 233 – 1713 317 – 3583 565 – 6588 580 – 1267710 40 – 43 92 – 149 143 – 442 179 – 1171 289 – 2826 317 – 6090 580 – 12677 798 – 23556R(3,3,3)=17 R(3,3)等于6的证明证明:在一个K6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。任意选取一个端点P,它有5条边和其他端点相连。根据鸽巢原理,3条边的颜色至少有两条相同,不失一般性设这种颜色是红色。在这3条边除了P以外的3个端点,它们互相连结的边有3条。若这3条边中任何一条是红色,这条边的两个端点和P相连的2边便组成一个红色三角形。若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。而在K5内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理。
编辑本段相关研究
  2010年8月,中南大学数学科学与计算技术学院酷爱数理逻辑的刘嘉忆在自学反推数学的时候,第一次接触到拉姆齐二染色定理,并在阅读大量文献时发现,海内外不少学者都在进行反推数学中的拉姆齐二染色定理的证明论强度的研究。这是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想,10多年来许多著名研究者一直努力都没有解决。同年10月的一天,刘嘉忆突然想到利用之前用到的一个方法稍作修改便可以证明这一结论,连夜将这一证明写出来,投给了数理逻辑国际权威杂志《符号逻辑杂志》。 2011年5月,由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行,还是大三学生的刘嘉忆应邀参加了这次会议,报告了他对目前反推数学中的拉姆齐二染色定理的证明论强度的研究。刘嘉忆的报告给这一悬而未决的公开问题一个否定式的回答,彻底解决了西塔潘的猜想。 《符号逻辑杂志》的主编、逻辑学专家、芝加哥大学数学系邓尼斯·汉斯杰弗德看到论文后给他写信:“我是过去众多研究该问题而无果者之一,看到这一问题的最终解决感到非常高兴,特别如你给出的如此漂亮的证明,请接受我对你令人赞叹的惊奇的成果的祝贺!”同时,邓尼斯·汉斯杰弗德教授高兴地将刘嘉忆的研究介绍给了其他几位同仁和专家,他们一起审读、反复商讨。 论文审稿人、芝加哥大学博士达米尔·扎法洛夫也认为:“这是一个重要的结果,过去20多年许多著名科研工作者在这方面进行努力。该问题的研究促进了反推数学和计算性理论方面的研究。” 2011年9月16日,美国芝加哥大学数理逻辑学术会议上,云集了来自欧美的许多数理逻辑专家、学者。大会邀请了12位专家、学者作学术报告,刘嘉忆作为亚洲高校唯一一位代表在会上作了40分钟报告。他在数理逻辑方面的研究成果,让与会专家、学者对这位来自中国的“80后”投上赞许的目光。刘嘉忆表示,他投给《美国数学会汇刊》的论文获得威士康星大学、伯克利大学等几位教授很高的评价,有望公开发表。

7,西塔潘猜想

证明:在一个K6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。任意选取一个端点P,它有5条边和其他端点相连。根据鸽巢原理,5条边的颜色至少有3条相同,不失一般性设这种颜色是红色。在这3条红边除了P以外的3个端点,它们互相连结的边有3条。若这3条边中任何一条是红色,这条边的两个端点和P相连的2边便组成一个红色三角形。若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。而在K5内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点 的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理

8,什么是西塔潘猜想

这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。拉姆齐数的定义拉姆齐数,用图论的语言有两种描述:对于所有的N顶图,包含k个顶的团或l个顶的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l);在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn[e1]中含有一个k阶子完全图,Kn[e2]含有一个l阶子完全图,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图)拉姆齐证明,对与给定的正整数数k及l,R(k,l)的答案是唯一和有限的。拉姆齐数亦可推广到多于两个数:对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为e1,e2,e3,...,er,在Kn中,必定有个颜色为e1的l1阶子完全图,或有个颜色为e2的l2阶子完全图……或有个颜色为er的lr阶子完全图。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。 拉姆齐数的数值或上下界已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。”显然易见的公式: R(1,s)=1, R(2,s)=s, R(l1,l2,l3,...,lr;r)=R(l2,l1,l3,...,lr;r)=R(l3,l1,l2,...,lr;r)(将li的顺序改变并不改变拉姆齐的数值)。 r,s 3 4 5 6 7 8 9 103 6 9 14 18 23 28 36 40 – 434 9 18 25 35 – 41 49 – 61 56 – 84 73 – 115 92 – 1495 14 25 43 – 49 58 – 87 80 – 143 101 – 216 125 – 316 143 – 4426 18 35 – 41 58 – 87 102 – 165 113 – 298 127 – 495 169 – 780 179 – 11717 23 49 – 61 80 – 143 113 – 298 205 – 540 216 – 1031 233 – 1713 289 – 28268 28 56 – 84 101 – 216 127 – 495 216 – 1031 282 – 1870 317 – 3583 317 – 60909 36 73 – 115 125 – 316 169 – 780 233 – 1713 317 – 3583 565 – 6588 580 – 1267710 40 – 43 92 – 149 143 – 442 179 – 1171 289 – 2826 317 – 6090 580 – 12677 798 – 23556R(3,3,3)=17 R(3,3)等于6的证明证明:在一个K6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。任意选取一个端点P,它有5条边和其他端点相连。根据鸽巢原理,3条边的颜色至少有两条相同,不失一般性设这种颜色是红色。在这3条边除了P以外的3个端点,它们互相连结的边有3条。若这3条边中任何一条是红色,这条边的两个端点和P相连的2边便组成一个红色三角形。若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。而在K5内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理。

9,阅读下面的材料,回答问题。中南大学22岁的大三学生刘路,由于破解了堪称国际数学难题的“西塔潘猜想”,

赞成者说:破常格方能得大才,走“不寻常路”的方式,未尝不是人才培养的一次探索。质疑者说:过度的奖励和关注,可能会揠苗助长、适得其反,历史上不是有方仲永“泯然众人”的悲剧吗? 试题分析:拟写看法时观点要鲜明,不能含糊其辞。赞成者和质疑者要能从是否有利于人才发展的角度来阐述自己的观点,另外注意句式和字数的限制。

10,世界顶级未解数学难题都有哪些?

1、霍奇猜想(Hodge conjecture): 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。 这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。 不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。 霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 2、庞加莱猜想(Poincaré conjecture): 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。 另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。 我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,法国数学家庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 3、黎曼假设: 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯粹数学及应用数学中都起着重要作用。 在所有自然数中,素数分布似乎并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于所谓的黎曼ζ函数。 黎曼假设断言,方程ζ(s)=0的非平凡零点的实部都是1/2,即位于直线1/2 + ti(“临界线”,critical line)上。这点已经对于开首的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立,将为围绕素数分布的许多奥秘带来光明。 4、杨-米尔斯(Yang-Mills)存在性和质量缺口: 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和罗伯特·米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。 基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。 尽管如此,他们的既描述重粒子、又在数学上严格的方程,并没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。 扩展资料:周氏猜测: 当2^(2^n)<p<2^(2^(n+1))时,Mp有2^(n+1)-1个是素数。 周海中还据此作出推论:当p<2^(2^(n+1))时,Mp有2^(n+2)-n-2个是素数。 关于梅森素数的分布研究,英国数学家香克斯、德国数学家伯利哈特、印度数学家拉曼纽杨和美国数学家吉里斯等曾分别提出过猜测,但他们的猜测有一个共同点,就是都以近似表达式提出;而它们与实际情况的接近程度均难如人意。 唯有周氏猜测是以精确表达式提出,而且颇具数学美。这一猜测至今未被证明或反证,已成了著名的数学难题。 美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:周氏猜测具有创新性,开创了富于启发性的新方法;其创新性还表现在揭示新的规律上。 参考资料:百度百科--数学难题